• BIOBLOG

    Un lugar en donde encontrarás información necesaria.

  • BIOBLOG

    La mejor forma de descubrir el mundo.

  • BIOBLOG

    El estudio de la vida para comprenderla.

  • BIOBLOG

    La ciencia te permite conocer más.

  • BIOBLOG

    Descubre como funciona tu cuerpo y tu ambiente.

  • BIOBLOG

    Biologia y diversión unidos de la mano.

Friday, May 30, 2014

Sistema nervioso

Posted by Unknown On 11:21 AM | No comments

SNC_002
Sencillo esquema del sistema nervioso central.
El sistema encargado de gobernar la función organizada de nuestros aparatos es elsistema nervioso (SN), el cual capta los estímulos externos por medio de receptores, los traduce a impulsos eléctricos que conduce al sistema nervioso central (SNC), a través de un sistema de conductores (nervios), y así, el SNC elabora una respuesta enviada por los nervios y efectuada por otros sistemas o tejidos en respuesta al estímulo.
Anatómicamente el sistema nervioso central está formado por el encéfalo y la médula espinal, ambos compuestos por varios millones de células especializadas llamadas neuronas, dispuestas ordenadamente y comunicadas entre sí y con los efectores por medio de prolongaciones denominadas axones y dendritas.
Las neuronas se disponen dentro de una armazón con células no nerviosas, las que en conjunto llamaremos neuroglia.
El sistema nervioso central está protegido por envolturas óseas y por envolturas membranosas.
Las envolturas óseas son el cráneo y la columna vertebral.
Las envolturas membranosas, en conjunto llamadas meninges, se denominan duramadre, aracnoides y piamadre.

Encéfalo

Es parte del sistema nervioso central, situado en el interior del cráneo.
El encéfalo es el órgano que controla todo el funcionamiento del cuerpo. Realiza un control voluntario e involuntario. También es el órgano del pensamiento y del razonamiento.
Anatómicamente, el encéfalo está conformado por el cerebro, el cerebelo, la lámina cuadrigémina (con los tubérculos cuadrigéminos) y el tronco del encéfalo o bulbo raquídeo.
Cerebro
Corresponde a la parte anterosuperior del encéfalo. Se sitúa apicalmente (en un extremo o punta) al tronco del encéfalo.
Está formado por dos grandes hemisferios, separados por la cisura interhemisférica, unidos en el fondo por el cuerpo calloso. Es la parte de mayor tamaño y se aloja en su totalidad dentro del cráneo.
x
El cráneo, la caja protectora del encéfalo.
Su función es muy compleja; regula los movimientos voluntarios y la actividad consciente consciente. Es el generador de ideas, hace conexiones, archiva, realiza las funciones superiores, es el centro de las funciones intelectuales, equilibra al organismo con el medio ambiente.
Está protejido por el cráneo, la duramadre, la piamadre y la aracnoides; está formado por la sustancia blanca, que es la ramificación de las neuronas y por la sustancia grisque son los cuerpos neuronales que forman la corteza cerebral (que tiene una superficie aproximada de  285 cm cuadrados y su grosor es de 2 a 3 mm).
El cerebro tiene el 2 por ciento del peso del cuerpo; consume el 25 por ciento del total de oxígeno y el 20 por ciento de la sangre que sale del corazón.
En el cerebro se alojan entre diez mil millones y catorce mil millones de neuronas.
El cerebro está formado o se puede dividir en dos partes: Telencéfalo y Diencéfalo
Telencéfalo
El telencéfalo es la estructura cerebral situada sobre el diencéfalo, corresponde a loshemisferios cerebrales. Representa el nivel más alto de integración somática y vegetativa.
Diencéfalo
Es la parte del cerebro situada entre el tronco del encéfalo y el telencéfalo y está compuesto por diferentes partes anatómicas:hipófisis, hipotálamo, subtálamo, tálamo y epitálamo.
Hipófisis
La hipófisis o glándula pituitaria es una glándula compleja que se aloja en una oquedad ósea llamada silla turca del huesoesfenoides, situada en la base del cráneo, en la fosa cerebral media, que conecta con el hipotálamo a través del tallo pituitario otallo hipofisario.
Hipotálamo
Del griego hypó (debajo de) + thálamos (cámara nupcial, dormitorio). El hipotálamo forma parte del diencéfalo, y se sitúa por debajo del tálamo.
Suele considerarse el centro integrador del sistema nervioso autónomo o vegetativo, dentro del sistema nervioso central. También se encarga de realizar funciones de integración somato-vegetativa.
El hipotálamo es el encargado de controlar las funciones del medio corporal interno, comportamiento sexual y las emociones, controla el sistema endocrino, actúa sobre el sitema nervioso autonómo y el sitema limbico (es el encargado de controlar las emociones y los instintos).
Está conectado a todos los nervios del cerebro, del sistema endocrino y nervioso además de la médula espinal.
Subtálamo
Estructura diencefálica situada entre mesencéfalo, tálamo e hipotálamo.
Tálamo
Estructura diencefálica de localización superior al hipotálamo.
En el tálamo, hacen sinapsis todas las vías sensoriales a excepción de la vía olfatoria.
Se compone de múltiples núcleos. Se distinguen núcleos específicos e inespecíficos.
Los específicos reciben una modalidad sensorial bien definida y la transmiten a áreas corticales bien delimitadas.
x
Algunas partes principales del sistema nervioso central.
Los inespecíficos, reciben información sensorial variada y la trasmiten de modo difuso sobre la corteza cerebral.
Ver: PSU: Biología; Pregunta 05_2006(2)
Epitálamo
Es una estructura diencefálica situada sobre el tálamo.
Las partes anatómicas del epitálamo son la glándula pineal o epífisis, el trígono de la habénula, las estrías habenulares y el techo epitelial del tercer ventrículo.

Cerebelo
Está localizado en la parte posterior y por debajo del cerebro. Sirve de puente junto con el bulbo raquídeo, a los impulsos de la médula para que lleguen al cerebro.
Entre sus funciones están: el regular, los latidos cardiacos, la presión arterial, la respiración, el equilibrio; coordina los movimientos musculares voluntarios como la marcha y la natación.
Desde el punto de vista anatómico la corteza del cerebelo se divide en una capa externa, o molecular, y una capa interna, o granulosa. Entre ambas capas aparecen unas células denominadas células de Purkinje. Aunque las células de las dos capas cerebelosas corticales son de pequeño tamaño, no por ello dejan de ser neuronas. También se halla presente la neuroglia.
Tubérculos cuadrigéminos
Los tubérculos cuadrigéminos o colículos cuadrigéminos están ubicados detrás del acueducto de Silvio y de los pedúnculos cerebrales. Conocida también como Lámina cuadrigémina esta estructura es la porción dorsal del techo del mesencéfalo. Está compuesta por dos pares de protrusiones (salientes o extensiones naturales de un órgano), los tubérculos cuadrigéminos superiores e inferiores.
Los tubérculos cuadrigéminos anteriores o superiores se denominan nates. Los posteriores o inferiores se denominan testes. Los anteriores actúan como centros para los reflejos visuales y los posteriores para los auditivos. En su estructura presentan la sustancia gris central recubierto por la sustancia blanca.
Bulbo raquídeo
Es el más bajo de los tres segmentos del tronco del encéfalo. Es llamado también médula oblonga. Es la terminación de la parte superior de la médula espinal. Actúa sobre movimientos involuntarios del corazón, intervienen en el funcionamiento de las vías respiratorias, del esófago, intestino delgado, páncreas, hígado, participa en los mecanismos del sueño y la vigilia, detecta los niveles de oxígeno y bióxido de carbono. Una lesión puede producir un paro respiratorio.

x

El encéfalo es la gran masa de tejido nervioso que ocupa el cráneo, pesa 1.200 g en el adulto.  La palabra cerebro se usa en varios sentidos; lo más corriente es que se utilice como sinónimo de encéfalo o para referirse a sus porciones.
El encéfalo está dividido en cerebro anterior, medio y posterior.
El cerebro anterior o prosencéfalo comprende el telencéfalo, constituido por los dos hemisferios cerebrales, y una pequeña porción inferior, el diencéfalo, que abarca importantes estructuras como el tálamo, los cuerpos geniculados interno y externo, la epífisis y el hipotálamo.
El cerebro medio o mesencéfalo, unido al cerebro anterior y posterior, consta ventralmente de los pedúnculos cerebrales y dorsalmente de la lámina cuadrigémina (con los tubérculos cuadrigéminos).
 El cerebro posterior, o rombencéfalo, comprende al cerebelo, la protuberancia y el bulbo raquídeo, cuya continuidad es la médula espinal.

La médula espinal

La médula espinal es un órgano con forma de cordón, que se encuentra en el interior de la columna vertebral, protegido por las vértebras y por las tres membranas denominadas meninges. Mide 45 cm de longitud y se extiende desde el agujero occipital del cráneo ocupando casi los 2/3 superiores del conducto raquídeo labrado en el espesor de la columna vertebral.
Un corte de la médula tiene forma de «H» y en él se aprecian sus dos partes: la sustancia gris, que forma la parte interna, y la sustancia blanca, en la parte externa.
x
Corte de la médula espinal y órganos y células implicados en un arco reflejo.
Morfológicamente, la médula espinal es similar en toda su extensión, a cada lado de ella emergen troncos nerviosos llamados raíces espinales, dorsales y ventrales, normalmente hay 31 pares de raíces espinales que se denominan según su relación con las vértebras: 8 cervicales, 12 dorsales, 5 lumbares, 5 sacras y un coxígeo. 
Las raíces abandonan el conducto raquídeo siguiendo los agujeros intervertebrales, luego se reúnen y dan origen a una rama nerviosa dorsal y otra ventral.
La médula espinal tiene dos funciones fundamentales: en primer lugar, es el centro de muchos actos reflejos. Las neuronas sensitivas entran por las raíces dorsales de la médula y hacen sinapsis dentro de la sustancia gris, con interneuronas y neuronas motoras que salen por las raíces ventrales de los nervios espinales.
En segundo lugar, la médula es la vía de comunicación entre el cuerpo y el encéfalo, gracias a los cordones blancos que permiten el paso de vías ascendentes sensitivas y vías descendentes motoras.
La mayoría de las vías ascendentes, antes de llegar a su destino, cruzan al otro lado del cuerpo. Así, las sensaciones que provienen de los receptores de un lado del cuerpo van a parar a la zona contraria del cerebro.
Las vías descendentes que provienen de distintas estructuras del encéfalo implicadas en el control motor también cruzan al lado contrario. Es decir que, en general, un lado del encéfalo recibe la información del lado opuesto del cuerpo y controla sus movimientos y otras funciones.
Debemos recordar que tanto el encéfalo como la médula espinal están rodeados y protegidos por membranas de tejido no nervioso, llamadas meninges, éstas son de afuera hacia adentro: la duramadre, la aracnoides y la piamadre.
Entre la aracnoides y la piamadre queda un espacio subaracnoídeo que contiene un fluido, el líquido cefalorraquídeo (LCR).


x

En la imagen de columna vertebral de la izquierda se ve la duramadre, que envuelve al cerebro.
En la imagen de la derecha se ven las cavidades por las cuales circula el líquido raquídeo.


VIDEOS SOBRE SISTEMA NERVIOSO. 

Genetica

Posted by Unknown On 11:08 AM | No comments
Se denomina Genética al estudio científico de cómo se trasmiten los caracteres físicos, bioquímicos y de comportamiento de padres a hijos. Este término fue acuñado en 1906 por el biólogo británico William Bateson.
Los genetistas estudian los mecanismos hereditarios en organismos que se reproducen de forma sexual,  y determinan semejanzas, diferencias y similitudes entre padres e hijos que se reproducen de generación en generación según determinados patrones. La investigación de estos últimos ha dado lugar a algunos de los descubrimientos más importantes de la biología moderna.
La ciencia de la genética nació en 1900, cuando varios investigadores de la reproducción de las plantas descubrieron el trabajo del monje austriaco Gregor Mendel, que aunque fue publicado en 1866 había sido ignorado en la práctica.
Mendel, que trabajó con la planta del guisante (chícharo o arveja), describió los patrones de la herencia en función de siete pares de rasgos contrastantes que aparecían en siete variedades diferentes de esta planta. Observó que los caracteres se heredaban como unidades separadas, y cada una de ellas lo hacía de forma independiente con respecto a las otras. Señaló que cada progenitor tiene pares de unidades, pero que sólo aporta una unidad de cada pareja a su descendiente. Más tarde, las unidades descritas por Mendel recibieron el nombre de genes. (Ver Glosario de genética)
Poco después del redescubrimiento de los trabajos de Mendel, los científicos se dieron cuenta de que los patrones hereditarios que él había descrito eran comparables a la acción de los cromosomas en las células en división, y sugirieron que las unidades mendelianas de la herencia, los genes, se localizaban en los cromosomas. Ello condujo a un estudio profundo de la división celular.
Los cromosomas varían en forma y tamaño y, por lo general, se presentan en parejas. Los miembros de cada pareja, llamadoscromosomas homólogos, tienen un estrecho parecido entre sí. La mayoría de las células del cuerpo humano contienen 23 pares de cromosomas.
Los organismos superiores que se reproducen de forma sexual se forman a partir de la unión de dos células sexuales especiales denominadas gametos.
La unión de los gametos combina dos conjuntos de genes, uno de cada progenitor. Por lo tanto, cada gen —es decir, cada posición específica sobre un cromosoma que afecta a un carácter particular— está representado por dos copias, una procedente de la madre y otra del padre.
Rara vez la acción de los genes es cuestión de un gen aislado que controla un solo carácter. Con frecuencia un gen puede controlar más de un carácter, y un carácter puede depender de muchos genes.
Los caracteres que se expresan como variaciones en cantidad o extensión, como el peso, la talla o el grado de pigmentación, suelen depender de muchos genes, así como de las influencias del medio.
El principio de Mendel según el cual los genes que controlan diferentes caracteres son heredados de forma independiente uno de otro es cierto sólo cuando los genes existen en cromosomas diferentes.
Después de que la ciencia de la genética se estableciera y de que se clarificaran los patrones de la herencia a través de los genes, las preguntas más importantes permanecieron sin respuesta durante más de cincuenta años: ¿cómo se copian los cromosomas y sus genes de una célula a otra, y cómo determinan éstos la estructura y conducta de los seres vivos?
A principios de la década de 1940, dos genetistas estadounidenses, George Wells Beadle y Edward Lawrie Tatum, proporcionaron las primeras pistas importantes. Trabajaron con los hongos Neurospora y Penicillium, y descubrieron que los genes dirigen la formación de enzimas a través de las unidades que los constituyen. Cada unidad (un polipéptido) está producida por un gen específico. Este trabajo orientó los estudios hacia la naturaleza química de los genes y ayudó a establecer el campo de la genética molecular.
Desde hace tiempo se sabe que los cromosomas están compuestos casi en su totalidad por dos tipos de sustancias químicas,proteínas y ácidos nucleicos. En parte debido a la estrecha relación establecida entre los genes y las enzimas, que son proteínas, al principio estas últimas parecían la sustancia fundamental que determinaba la herencia. Sin embargo, en 1944, el bacteriólogo canadiense Oswald Theodore Avery demostró que el ácido desoxirribonucleico (ADN) era el que desempeñaba esta función.
Extrajo el ADN de una cepa de bacterias y lo introdujo en otra cepa. La segunda no sólo adquirió las características de la primera, sino que también las transmitió a generaciones posteriores.
Por aquel entonces, se sabía que el ADN estaba formado por unas sustancias denominadas nucleótidos. Cada nucleótido estaba compuesto a su vez por un grupo fosfato, un azúcar conocido como desoxirribosa, y una de las cuatro bases que contienen nitrógeno. Las cuatro bases nitrogenadas son adenina (A), timina (T), guanina (G) y citosina (C).
En 1953, el genetista estadounidense James Dewey Watson y el británico Francis Harry Compton Crick aunaron sus conocimientos químicos y trabajaron juntos en la estructura del ADN. Esta información proporcionó de inmediato los medios necesarios para comprender cómo se copia la información hereditaria.
Watson y Crick descubrieron que la molécula de ADN está formada por dos cadenas, o filamentos, alargadas que se enrollan formando una doble hélice, algo parecido a una larga escalera de caracol.
Las cadenas, o lados de la escalera, están constituidas por moléculas de fosfato e hidratos de carbono que se alternan.
Las bases nitrogenadas, dispuestas en parejas, representan los escalones.
Cada base está unida a una molécula de azúcar y ligada por un enlace de hidrógeno a una base complementaria localizada en la cadena opuesta.
La adenina siempre se vincula con la timina, y la guanina con la citosina.
Para hacer una copia nueva e idéntica de la molécula de ADN, sólo se necesita que las dos cadenas se extiendan y se separen por sus bases (que están unidas de forma débil); gracias a la presencia en la célula de más nucleótidos, se pueden unir a cada cadena separada bases complementarias nuevas, formando dos dobles hélices.
Si la secuencia de bases que existía en una cadena era AGATC, la nueva contendría la secuencia complementaria, o “imagen especular”, TCTAG. Ya que la base de cada cromosoma es una molécula larga de ADN formada por dos cadenas, la producción de dos dobles hélices idénticas dará lugar a dos cromosomas idénticos.
Desde que se demostró que las proteínas eran producto de los genes, y que cada gen estaba formado por fracciones de cadenas de ADN, los científicos llegaron a la conclusión de que debe haber un código genético mediante el cual el orden de las cuatro bases nitrogenadas en el ADN podría determinar la secuencia de aminoácidos en la formación de polipéptidos.
En otras palabras, debe haber un proceso mediante el cual las bases nitrogenadas transmitan la información que dicta la síntesis de proteínas. Este proceso podría explicar cómo los genes controlan las formas y funciones de las células, tejidos y organismos.
 Diez años después de que se determinara la estructura del ADN, el código genético fue descifrado y verificado. Su solución dependió en gran medida de las investigaciones llevadas a cabo sobre otro grupo de ácidos nucleicos, los ácidos ribonucleicos (ARN)(Ver Cronología de la genética).
Herencia humana
La mayoría de las características físicas humanas están influidas por múltiples variables genéticas, así como por el medio. Algunas, como la talla, poseen un fuerte componente genético, mientras que otras, como el peso, tienen un componente ambiental muy importante. Sin embargo, parece que otros caracteres, como el grupo sanguíneo y los antígenos implicados en el rechazo de trasplantes, están totalmente determinados por componentes genéticos. No se conoce ninguna situación debida al medio que varíe estas características.
La susceptibilidad a padecer ciertas enfermedades tiene un componente genético muy importante. Este grupo incluye la esquizofrenia, la tuberculosis, la malaria, varias formas de cáncer, la migraña, las cefaleas y la hipertensión arterial. Muchas enfermedades infrecuentes están originadas por genes recesivos, y algunas por genes dominantes. (Ver Enfermedades genéticas)
Los biólogos tienen un gran interés en el estudio e identificación de los genes. Cuando un gen determinado está implicado en una enfermedad específica, su estudio es muy importante desde el punto de vista médico. El genoma humano contiene entre 50.000 y 100.000 genes, de los que cerca de 4.000 pueden estar asociados a enfermedades.

VIDEOS SOBRE GENÉTICA.

Teorías de la creacion del universo.

Posted by Unknown On 10:59 AM | No comments
Teoría del Big Bang
Según la teoría del Big Bang (enlace en inglés) el universo aparece de la nada. Todo lo que existe nació de una gran explosión hace 15.000 millones de años. La materia se concentraba en un punto decenas de miles de veces más pequeño que el núcleo de un átomo.
Esta teoría no tiene la autoría de un científico concreto, surgió de las ecuaciones que generaba la ley de Hubble que demostraba que el universo se encuentra en expansión. En cuanto al término Big Bang lo inventó el mayor enemigo de la teoría en su momento, Fred Hoyle, quien propuso su propia hipótesis alternativa (universo estacionario).
En cualquier caso, el Big Bang se ha convertido en el paradigma cosmogónico por excelencia, primero porque va cumpliendo (a pesar de sus carencias) todos los presupuestos de la relatividad y segundo porque no excluye la existencia de una Conciencia Creadora con un plan divino lo que gratifica a los poderosos lobbys religiosos.
Entre las pruebas que se aportan a su favor se encuentra la constatación en 1990 gracias al satélite COBE de la existencia de radiación cósmica de fondo (también señalada comoradiación de fondo de microondas o radiación cósmica de fondo -CMB según sus siglas en inglés) que predecía el modelo teórico y que en 1965 habían descubierto Arno Penzias y Robert Wilson.
Y antes ¿qué había según este modelo? Lo desconocemos. Las ecuaciones sólo describen lo que pasó a los 10-43 segundos, un momento conocido como tiempo de Planck.
Teoría del Universo estacionario
No todos los científicos estaban de acuerdo con el modelo de Big Bang en el que no encajaban todas las observaciones. Tres cosmólogos (Hermann Bondi, Thomas Gold y Fred Hoyle) desarrollaron en 1948 una teoría alternativa con muchos seguidores que las pruebas aportadas por COBE sobre radiación de fondo han relegado (que no descartado) a teoría marginal.
Basada en el principio cosmológico perfecto que dice que un observador situado en cualquier espacio o tiempo ve el mismo universo ya que sus propiedades son constantes sea donde sea. No hay un Big Bang porque el universo siempre fue así. Nuestro universo no tendría principio ni fin.
Estos heterodoxos del Big Bang consideran que la materia se está creando continuamente a partir del vacío. Desde un hipotético "campo C", la materia se filtra a nuestro universo e impulsa la expansión cósmica prevista por la ley de Hubble.
Teoría del Universo oscilatorio
Fue propuesta por Richard Tolman de 1948 (el mismo año de su muerte). Muy relacionada con la teoría del universo estacionario, no existe una explosión inicial, sino una contracción de nuestro propio universo hasta un punto de enorme densidad (que denominó Big Crunch) en que la fuerza de atracción de la gravedad se convierte en una fuerza repulsiva que provoca una expansión de la materia (un Big bang).
Este acontecimiento se produciría continuamente dando lugar a una sucesión cíclica e infinita del mismo universo (que no necesariamente tienen que poseer las mismas condiciones).
En 2010 el físico Roger Penrose aseguró encontrar en la radiación cósmica de fondo patrones circulares que indicarían un ciclo continuo de nacimiento y muerte del universo a lo largo de eones.
Teoría del Universo inflacionario
Propuesta por el ruso Andrei Linde, descarta un Big Bang inicial para sustituirlo por muchos pequeños big bangs que estarían produciéndose continuamente, incluso en la actualidad, por todo el espacio. La materia de nuestro universo se estaría creando continuamente en los núcleos de las galaxias activas.
Se trataría de agujeros de gusano, puntos extraordinariamente curvados del espacio tiempo que conectan agujeros negros con agujeros blancos.
Esta teoría requiere de la existencia del multiverso o multiuniverso con un intercambio continuo de materia y energía entre ellos. Lee Smolin, de la universidad de Siracusa, considera que todo el cosmos es un complejo sistema en el que nacen y mueren continuamente universos.
La hipótesis inflacionaria resuelve algunos inconvenientes de la teoría del Big Bang, pero anula la necesidad de un impulso primigenio, ya que el universo inflacionario es eterno. Para Roger Penrose también requiere condiciones iniciales. "tan extremadamente específicas" que no resuelve el problema del inicio. Este modelo requiere la existencia de un campo físico aún desconocido, el inflatón.

VIDEO SOBRE LA CREACIÓN DEL UNIVERSO.

La celula

Posted by Unknown On 10:50 AM | No comments



La célula es la unidad anatómica, funcional y genética de los seres vivos.
La célula es una estructura constituida por tres elementos básicos:
1.- membrana plasmática,
2.- citoplasma y
3.- material genético (ADN).
Posee la capacidad de realizar tres funciones vitales:
nutrición, relación y reproducción.
Se llaman eucariotas a las células que tienen la información genética envuelta dentro de una membrana que forman el núcleo.
Un organismo formado por células eucariotas se denomina eucarionte.
Muchos seres unicelulares tienen la información genética dispersa por su citoplasma, no tienen núcleo. A ese tipo de células se les da el nombre deprocariotas.


Esquema de una Membrana Celular



Esquema de una Célula Vegetal



Esquema de una Célula Animal


El citoplasma es el espacio celular comprendido entre la membrana plasmática y la envoltura nuclear. 
Está constituido por el citosol, el citoesqueleto y los orgánulos celulares.
El citosol o hialoplasma, es el medio interno del citoplasma. Es la solución acuosa donde flotan el citoesqueleto y los ribosomas. Está formado por un 85% de agua con un gran contenido de sustancias dispersas en él de forma coloidal (prótidos, lípidos, glúcidos, ácidos nucleicos y nucleótidos así como sales disueltas. 
En el citosol se producen muchas de las funciones más importantes de mantenimiento celular, como las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. En él se produce una ingente cantidad de reacciones metabólicas importantes: glucólisis, gluconeogénesis, fermentación láctica, etc.
El citoesqueleto aparece en todas las células eucariotas.
La composición química es una red de fibras de proteína (microfilamentos, filamentos intermedios y microtúbulos).
Sus funciones son mantener la forma de la célula, formar pseudópodos, contraer las fibras musculares, transportar y organizar los orgánulos celulares.


(1) Núcleolo.
(2) Núcleo celular.
(3) Ribosoma.
(4) Vesículas.
(5) Retículo Endoplásmico Rugoso.
(6) Aparato de Golgi.
(7) Microtúbulos.
(8) Retículo Endoplásmico Liso.
(9) Mitocondria.
(10).Vacuola.
(11) Citoplasma.
(12) Lisosoma.


Esquema de una Célula

(1) Núcleo.
(2) Poro Nuclear
(3) Retículo endoplásmico rugoso (RER)
(4) Retículo endoplásmico liso (SER)
(5) Ribosoma en el RER.
(6) Proteínas que son trasportadas.
(7) Vesícula trasportadora.
(8) Aparato de Golgi (AG).
(9) Cisterna del AG.
(10) Transmembrana de AG.
(11) Cisterna de AG.
(12) Vesícula secretora.
(13) Membrana plasmática.
(14) Proteína secretada.
(15) Citoplasma.
(16) Espacio extracelular.


Retículo Endoplásmático

El retículo endoplasmático es un sistema membranoso cuya estructura consiste en una red de sáculos aplanados o cisternas, sáculos globosos o vesículas y túbulos sinuosos que se extienden por todo el citoplasma y comunican con la membrana nuclear externa.
Dentro de esos sacos aplanados existe un espacio llamado lúmen que almacena las sustancias. Existen dos clases de retículo endoplasmático: rugoso (con ribosomas adheridos) y liso (libres de ribosomas asociados).

Su función primordial es la síntesis de proteínas, la síntesis de lípidos constituyentes de membrana y la participación en procesos de detoxificación de la célula.

Ribosomas

Los ribosomas son estructuras globulares, carentes de membrana.
Están formados químicamente por varias proteínas asociadas a ARN ribosómico procedente del nucléolo. Pueden encontrarse libres en el citoplasma o adheridos a las membranas del retículo endoplasmático. Unas proteínas (riboforinas) sirven de nexo entre ambas estructuras.

Su estructura es sencilla: dos subunidades (una mayor o otra menor) de diferente coeficiente de sedimentación.
Su función consiste únicamente en ser el orgánulo lector del ARN mensajero, con órdenes de ensamblar los aminoácidos que formarán la proteína.
Son orgánulos sintetizadores de proteínas.

Mitocondrias : La central energética

Las mitocondrias son los orgánulos celulares encargados de suministrar la mayor parte de la energía necesaria para la actividad celular, actúan por tanto,como centrales energéticas de la célula y sintetizan ATP a expensas de los carburantes metabólicos (glucosa, ácidos grasos y aminoácidos).
1. Membrana interna.
2. Membrana externa.
3. Cresta.
4. Matriz.

Lisosomas

Los lisosomas son vesículas procedentes del Aparato de Golgi que contienen enzimas digestivas como las hidrolasas ácidas.


Aparato de Golgi

Se encuentra en el citoplasma de la célula.El aparato de Golgi está formado por sacos aplanados limitados por membranas.
Funciona como una planta empaquetadora, modificando vesículas del retículo endoplasmático rugoso.
El material nuevo de las membranas se forma en varias cisternas del Golgi.
Dentro de las funciones que posee el Aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación (targeting), glicosilación de lípidos y la síntesis de polisacáridos de la matriz extracelular.

Vacuolas

Las vacuolas son estructuras celulares, muy abundantes en las células vegetales, contenidas en el citoplasma, de forma más o menos esféricas u ovoideas, generadas por la propia célula al crear una membrana cerrada que aisla un cierto volumen celular del resto del citoplasma.
Su contenido es fluido.
Almacenan productos de nutrición o de desecho, y pueden contener enzimas lisosómicas.

El Núcleo

El núcleo, rodeado de una membrana propia, llamada membrana nuclear, es la parte central de la célula, que contiene el ácido desoxirribonucleico (ADN o en inglés DNA), donde se encuentran codificados los genes


(1) Membrana nuclear
(2) Ribosomas
(3) Poros Nucleares
(4) Nucleolo
(5) Cromatina
(6) Núcleo
(7) Reticulo endoplásmico
(8) Nucleoplasma 

Núcleo

El núcleo es una estructura constituida por una doble membrana, denominada envoltura nuclear que rodea al ADN de la celula separándolo del citoplasma.
El medio interno se denomina nucleoplasma y en el están sumergidas, más o menos condensadas, las fibras de ADN que se llaman cromatina y corpúsculos formados por ARN conocidos como nucleolos.

Genes

La molécula de ADN es una hélice larga y doble, semejante a una escalera de caracol. Los eslabones de esta cadena, que determinan el código genético de cada individuo, se componen de pares de cuatro tipos de moléculas denominadas bases (adenina, timina, guanina y citosina). La adenina se empareja con la timina y la guanina con la citosina. El código genético está escrito en tripletes, de manera que cada grupo de tres eslabones de la cadena codifica la producción de uno de los aminoácidos, los cuales son los componentes que constituirán las proteínas.

Cromosomas

Cada persona posee 23 pares de cromosomas. Una de estas parejas determina el sexo con el que se nace, adoptando el nombre de "cromosomas sexuales".
Por su forma se identifican los cromosomas sexuales femeninos (determinan que la persona sea de sexo femenino) como XX, y la pareja de cromosomas masculinos como XY (determinan que la persona sea de sexo masculino).


VIDEOS SOBRE LA CÉLULA. 
La célula paso a paso.
La célula animal.
Célula eucariota.

Blogroll

About